626 research outputs found

    The evidence for jet-cloud interactions in a sample of high/intermediate-redshift radio galaxies

    Full text link
    We present the result obtained from a study, based on long-slit spectroscopy, of the kinematics and ionization mechanisms of the line-emitting gas for a sample of four high/intermediate-redshift radio galaxies. In two of the galaxies (3C352 and 3C435A) the radio sources are of the same scale as the emission-line regions, whereas in the other two (3C34 and 3C330) the radio sources are extended on a larger scale than the emission-line structures. We see evidence for shock-acceleration of the emission-line gas in the extended regions of all the galaxies, even in the largest radio sources of our sample, in which the radio hot spots have passed the extended gas of the galaxies. The extended regions present highly disturbed kinematics (line-splitting and/or underlying broad components), which are difficult to explain if we do not consider a strong interaction between the radio-emitting components and the ambient gas. However, the dominant ionization mechanism of the line-emitting gas remains uncertain. We have compared the optical diagnostic line ratios of the galaxies in our sample with both AGN-photoionization and shock-ionization models. We find a lack of consistency in explaining the main ionization mechanism of the emission-line gas. This suggest that, if the extended regions are shock-ionized, some of the assumptions implicit in the shock models may need to be reconsidered. In addition, we have investigated the nebular continuum cointribution to the UV excess in the galaxies of our sample. We find a substantial nebular emission contribution to the UV continuum in all the cases. However, after the subtraction iof the nebular component, a significant UV excess remains in the extended nebulae of most of the objects.Comment: 33 pages, 24 figures, accepted for publication in MNRAS. (Abstract shortened for astro-ph

    Polarization Profiles of Scattered Emission Lines. II. Upstream Dust Scattering in the HH 1 Jet

    Full text link
    Detailed comparisons are made between observations of scattered light upstream of the head of the HH~1 jet and predictions of simple scattering models. It is shown that, in order to unambiguously determine the velocity of the head of the jet (bow shock) with respect to the upstream dust, existing spectroscopic observations are insufficient and that spectropolarimetric observations of the scattered light are necessary. Such an independent measure of the bow shock velocity is important in order to test ``multiple outflow'' theories of Herbig-Haro jets. It is also shown 2that the scattering dust must have a very forward-throwing scattering phase function (\langle\cos\theta\rangle\msim 0.7) and slight evidence is found for a dust-gas ratio that is higher than average.Comment: 11 pages, uuencoded compressed postscript (including 9 figures), accepted for publication in Ap.J., IAUNAM_contrib.#34

    Beyond personality: exploring the role of motivations, self-evaluations and values in leadership emergence within an organizational setting

    Get PDF
    The current research explored personality and non-personality constructs in relation to leadership emergence. Managers of a UK insurance company completed a self-report survey on leadership behaviours. Analyses of over one hundred participants demonstrated significant associations between emergence and many variables (e.g. extraversion, motivation, and leader-member relationships). Practical implications (i.e. in leadership selection and development) are discussed, and recommendations presented. Further research combining dispositional and situational factors in emergence is advised, as are longitudinal studies employing multiple methodologies across a diverse sample

    HST and Spitzer point source detection and optical extinction in powerful narrow-line radio galaxies

    Get PDF
    We present the analysis of infrared HST and Spitzer data for a sample of 13 FRII radio galaxies at 0.03<z<0.11 that are classified as narrow-line radio galaxies (NLRG). In the context of the unified schemes for active galactic nuclei (AGN), our direct view of the AGN in NLRG is impeded by a parsec-scale dusty torus structure. Our high resolution infrared observations provide new information about the degree of extinction induced by the torus, and the incidence of obscured AGN in NLRG. We find that the point-like nucleus detection rate increases from 25 per cent at 1.025μ\mum, to 80 per cent at 2.05μ\mum, and to 100 per cent at 8.0μ\mum. This supports the idea that most NLRG host an obscured AGN in their centre. We estimate the extinction from the obscuring structures using X-ray, near-IR and mid-IR data. We find that the optical extinction derived from the 9.7μ\mum silicate absorption feature is consistently lower than the extinction derived using other techniques. This discrepancy challenges the assumption that all the mid-infrared emission of NLRG is extinguished by a simple screen of dust at larger radii. This disagreement can be explained in terms of either weakening of the silicate absorption feature by (i) thermal mid-IR emission from the narrow-line region, (ii) non-thermal emission from the base of the radio jets, or (iii) by direct warm dust emission that leaks through a clumpy torus without suffering major attenuation.Comment: 18 pages, 7 figures, 8 tables, accepted for publication in MNRA

    The large scale distribution of warm ionized gas around nearby radio galaxies with jet-cloud interactions

    Get PDF
    Deep, narrow-band Halpha observations taken with the TAURUS Tunable Filter (TTF) on the 4.2m WHT telescope are presented for two nearby radio galaxies with strong jet-cloud interactions. Although the brightest emission line components are closely aligned with the radio jets --- providing nearby examples of the ``alignment effect'' most commonly observed in high redshift (z > 0.5) radio galaxies --- lower surface brightness emission line structures are detected at large distances (10's of kpc) from the radio jet axis. These latter structures cannot be reconciled with anisotropic illumination of the ISM by obscured quasar-like sources, since parts of the structures lay outside any plausible quasar ionization cones. Rather, the distribution of the emission lines around the fringes of the extended radio lobes suggests that the gas is ionized either by direct interaction with the radio components, or by the diffuse photoionizing radiation fields produced in the shocks generated in such interactions. These observations serve to emphasise that the ionizing effects of the radio components can extend far from the radio jet axes, and that deep emission line imaging observations are required to reveal the true distribution of warm gas in the host galaxies. We expect future deep imaging observations to reveal similar structures perpendicular to the radio axes in the high-z radio galaxies.Comment: 18 pages, 4 figures, to be published in MNRA

    WFPC2 LRF Imaging of Emission Line Nebulae in 3CR Radio Galaxies

    Get PDF
    We present HST/WFPC2 Linear Ramp Filter images of high surface brightness emission lines (either [OII], [OIII], or H-alpha+[NII]) in 80 3CR radio sources. We overlay the emission line images on high resolution VLA radio images (eight of which are new reductions of archival data) in order to examine the spatial relationship between the optical and radio emission. We confirm that the radio and optical emission line structures are consistent with weak alignment at low redshift (z < 0.6) except in the Compact Steep Spectrum (CSS) radio galaxies where both the radio source and the emission line nebulae are on galactic scales and strong alignment is seen at all redshifts. There are weak trends for the aligned emission line nebulae to be more luminous, and for the emission line nebula size to increase with redshift and/or radio power. The combination of these results suggests that there is a limited but real capacity for the radio source to influence the properties of the emission line nebulae at these low redshifts (z < 0.6). Our results are consistent with previous suggestions that both mechanical and radiant energy are responsible for generating alignment between the radio source and emission line gas.Comment: 80 pages, 54 figures. Accepted for publication in ApJ

    High Accuracy Near-infrared Imaging Polarimetry with NICMOS

    Full text link
    The findings of a nine orbit calibration plan carried out during HST Cycle 15, to fully determine the NICMOS camera 2 (2.0 micron) polarization calibration to high accuracy, are reported. Recently Ueta et al. and Batcheldor et al. have suggested that NICMOS possesses a residual instrumental polarization at a level of 1.2-1.5%. This would completely inhibit the data reduction in a number of GO programs, and hamper the ability of the instrument to perform high accuracy polarimetry. We obtained polarimetric calibration observations of three polarimetric standards at three spacecraft roll angles separated by ~60deg. Combined with archival data, these observations were used to characterize the residual instrumental polarization in order for NICMOS to reach its full potential of accurate imaging polarimetry at p~1%. Using these data, we place an 0.6% upper limit on the instrumental polarization and calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, are seen to dominate the accuracy of p and theta. However, the updated coefficients do allow imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15deg. This work enables a new caliber of science with HST.Comment: 13 pages, 9 figures, PASP accepte

    High Accuracy Imaging Polarimetry with NICMOS

    Get PDF
    The ability of NICMOS to perform high accuracy polarimetry is currently hampered by an uncalibrated residual instrumental polarization at a level of 1.2-1.5%. To better quantify and characterize this residual we obtained observations of three polarimetric standard stars at three separate space-craft roll angles. Combined with archival data, these observations were used to characterize the residual instrumental polarization to enable NICMOS to reach its full polarimetric potential. Using these data, we calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, dominate the accuracy of p and theta. However, the new coefficients now enable imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15 degrees.Comment: 5 pages, 2 figures. Contributed talk, "Astronomical Polarimetry 2008. Science from Small to Large Telescopes" La Malbaie, Quebec, Canada, 200

    Testing the photoionization models of powerful radio galaxies: Mixed line-emitting media in 3C 321

    Get PDF
    The photoionization models for the narrow emission line regions of powerful radio galaxies have yet to be tested in depth. To this end, we present high-quality long-slit spectroscopy of the powerful double-nucleus radio galaxy 3C 321. The data have good enough spatial resolution to be able to trace the variation in emission-line properties on kpc scales. Continuum modelling and subtraction enables the faint emission line fluxes to be measured in several regions across the emission line nebula. We plot diagnostic line-ratio diagrams and compare them with the predictions of various photoionization models, finding that the data is best fit by models which assume a mixture of optically thin and thick clouds illuminated by a power-law continuum. The emission line kinematics, line ratios and deduced physical conditions show remarkably little variation across the source. We deduce a mean electron density of 400 +/- 120 cm-3 and a mean temperature of 11500 +/- 1500 K. Assuming a single population of optically thick line-emitting clouds, we calculate a mean photoionization parameter of (1.1 +/- 0.5) x 10e-2 and hence a photoionizing photon luminosity of Q ~ 10e55 -- 10e56 photon/s/sr. This indicates a central engine as luminous as that of the powerful quasar 3C 273, yet there is no evidence for such an energetically prolific central engine at either far-infrared or radio wavelengths. We therefore conclude that the mixed-media models, which give Q ~ 5 x 10e53 -- 5 x 10e54, represent a more likely scenario. As a by-product of the continuum subtraction we infer that young stellar populations account for ~ 0.4% of the visible stellar mass in the galaxy, and that these populations are spatially extended.Comment: Accepted for publication in MNRA
    • …
    corecore